# ¿Por favor necesito ayuda tengo que hallar la ecuacion de: p1 (5,-7) p2 (-4,7) p1 ( 6,5) p2 ( -3 -6 ) p1 (6,-3) p2 ( -5, 8 )?

### 2 respuestas

Calificación
• Respuesta favorita

...

p1 = (x1, y1; p2 = (x2, y2)

ecuación de la recta por dos puntos

y - y1 .. x - x1

------- = --------

y2-y1 .. x2-x1

p1 (5, -7) p2 (-4, 7) → y = - 14/9 x + 7/9

p1 ( 6, 5) p2 (-3, -6) → y = 11/9 x - 7/3

p1 (6, -3) p2 ( -5, 8 ) → y = - x + 3

Suerte

• How do I find the equation for the straight line with two points A (5 ; - 7) B (- 4 ; 7) ?

The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept

To calculate m:

m = (yB - yA) / (xB - xA) = (7 + 7) / (- 4 - 5) = - 14/9

The equation of the line becomes: y = - (14/9).x + b

To calculate b:

The line passes through A, so the coordinates of this point must verify the equation of the line.

y = - (14/9).x + b

b = y + (14/9).x → you substitute x and y by the coordinates of the point A (5 ; - 7)

b = - 7 + [(14/9) * 5]

b = - (63/9) + (70/9) = 7/9

→ The equation of the line (AB) is: y = - (14/9).x + (7/9)

y = (- 14x + 7)/9

9y = - 14x + 7

14x + 9y = 7

How do I find the equation for the straight line with two points A (6 ; 5) B (- 3 ; - 6) ?

The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept

To calculate m:

m = (yB - yA) / (xB - xA) = (- 6 - 5) / (- 3 - 6) = 11/9

The equation of the line becomes: y = (11/9).x + b

To calculate b:

The line passes through A, so the coordinates of this point must verify the equation of the line.

y = (11/9).x + b

b = y - (11/9).x → you substitute x and y by the coordinates of the point A (6 ; 5)

b = 5 - [(11/9) * 6]

b = (15/3) - (22/3) = - 7/3

→ The equation of the line (AB) is: y = (11/9).x - (7/3)

y = (11/9).x - (21/9)

y = (11x - 21)/9

9y = 11x - 21

11x - 9y = 21

How do I find the equation for the straight line with two points A (6 ; - 3) B (- 5 ; 8) ?

The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept

To calculate m:

m = (yB - yA) / (xB - xA) = (8 + 3) / (- 5 - 6) = - 1

The equation of the line becomes: y = - x + b

To calculate b:

The line passes through A, so the coordinates of this point must verify the equation of the line.

y = - x + b

b = y + x → you substitute x and y by the coordinates of the point A (6 ; - 3)

b = - 3 + 6

b = 3

→ The equation of the line (AB) is: y = - x + 3

x + y = 3

¿Aún tienes preguntas? Pregunta ahora y obtén respuestas.